
Refining heap-shape information
for Java programs using reachable

types

by

David Kräutmann
Research Group Computer Science 2

RWTH Aachen University

First supervisor: Prof. Dr. Jürgen Giesl
Second supervisor: Prof. Dr. Thomas Noll

Advisor: Florian Frohn

This thesis is submitted on March, 2016 in partial fulfilment of the
requirements for the degree of Bachelor of Science in Computer Science

Abstract

We introduce a reachable type analysis, a new path-sensitive, sound, interpro-
cedual analysis that uses heap-shape information to overapproximate all possi-
ble types reachable from objects. The resulting reachable type set can then be
used to further refine heap-shape information generated by other tools. A pre-
liminary evaluation of the analysis by measuring the accuracy of dynamic dis-
patch resolution occurring in the analysis itself shows substantially improved
results.

Contents

1 Introduction 9

2 Background 11
2.1 Partial functions . 11
2.2 Paths . 12
2.3 Heap-shape analysis . 14
2.4 Soot . 15

2.4.1 Jimple . 15
2.4.1.1 Language description 16

3 Reachable type analysis 19
3.1 Semantics . 19
3.2 Flow analysis . 21
3.3 Correctness . 32
3.4 Refining heap-shape information . 35

3.4.1 Call devirtualisation . 35
3.4.2 Disproving path existence . 36

4 Results and evaluation 37

5 Related work 39
5.1 Heap-shape information . 39
5.2 Points-to analysis . 39

6 Future work 41
6.1 Current restrictions . 41
6.2 Known issues . 41
6.3 Improvements . 42
6.4 Integration with heap-shape analysis 42

7 Conclusion 43

Bibliography 45

CHAPTER 1

Introduction

Shape analysis is an useful tool for many other program analyses such as com-
piler optimisation [1], parallelisation [2], or termination checking, where the
termination of code that uses linked data structures can depend on said data
structured being cycle-free. Existing methods such as in AProVE [3], Julia [4] or
COSTA [5] currently do not perform amodular and path-sensitive type analysis.

We introduce a reachable type analysis, a sound interprocedual analysis
which for each method generates a method result consisting of a parametric
type set for the return value, each argument and all modified static fields, de-
scribing how the reachable types for all affected references change after an in-
vocation of the method. This method result is parametric, meaning that it can
then be instantiated with argument type information only when used, allowing
for improved locality during analysis in addition to improved performance as
each method has to be analysed only once. Furthermore it is possible to ac-
cess the parametric type set of any local reference or static field at any code
location.

Our analysis requires existing path-sensitive heap-shape information and
can be used in further analyses, for example by reducing the set of possible
concrete targets of a virtual method invoke or disproving the existence of a
path from one reference to another. In particular it can then be invoked again
on refined heap-shape information to get even more refined types.

In chapter 2, we give an overview over the abstract path representation used,
our requirements for the heap-shape analysis and Soot [6], the framework used
for our analysis. Chapter 3 describes the reachable types of a program at run-
time, the structure of our static data-flow analysis in detail, proves its cor-
rectness and elaborates how reachable type information can be used to refine
heap-shape information. Finally, chapter 4 compares the quality of dynamic

9

dispatch resolution in the analysis itself with and without refinement. A short
overview over related work is given in chapter 5 and areas of improvement are
highlighted in chapter 6.

10

CHAPTER 2

Background

2.1 Partial functions

We require a notion of partial functions to model various operations that re-
quire lookup by a key.

Definition 2.1. A partial function 𝑓 ∶ 𝐴 ↦ 𝐵 is only defined on a subset 𝐴′ ⊆ 𝐴.
For all 𝑥 ∈ 𝐴, either 𝑓(𝑥) ∈ 𝐵 or 𝑓(𝑥) is undefined. Partial functions consist of
2-tuples 𝑥 → 𝑦 so that 𝑓(𝑥) = 𝑦 and each 𝑥 occurs at most once. We define the
following operations on partial functions:

• The domain of definition of a partial function is given by Dom(𝑓) = 𝐴′

• The restriction 𝑓|𝑆 ∶ 𝐴 ∩ 𝑆 ↦ 𝐵 of 𝑓 ∶ 𝐴 ↦ 𝐵 to a set 𝑆 is obtained by
setting all elements in 𝐴 ⧵ 𝑆 to undefined

• The intersection 𝑓 ∩ 𝑔 ∶ 𝐴1 ∩𝐴2 ↦ 𝐵 of two partial functions 𝑓 ∶ 𝐴1 ↦ 𝐵
and 𝑔 ∶ 𝐴2 ↦ 𝐵 is given by 𝑓 ∩ 𝑔 = 𝑓|Dom(𝑔)

• The union 𝑓 ∪ 𝑔 ∶ 𝐴1 ∪𝐴2 ↦ 𝐵 is well-defined iff Dom(𝑓) ∩Dom(𝑔) = ∅.
Then

(𝑓 ∪ 𝑔)(𝑥) =
⎧⎪
⎨⎪⎩

𝑓(𝑥) if 𝑥 ∈ Dom(𝑓)
𝑔(𝑥) if 𝑥 ∈ Dom(𝑔)

�

• The set-minus operation 𝑓 ⧵ 𝑔 ∶ 𝐴1 ↦ 𝐵 is given by 𝑓|𝐴⧵Dom(𝑔)

• The symmetric difference 𝑓⊕ 𝑔 ∶ 𝐴1 ∪𝐴2 ↦ 𝐵 is given by (𝑓 ⧵ 𝑔) ∪ (𝑔 ⧵ 𝑓)

11

2.2 Paths

Representation of heap structure requires a way to model field and array access
sequences. While in actual programs paths can be described by a set of finite
sequences, static analysis requires a more permissive language that can model
potentially infinite paths. First we introduce a few auxiliary definitions:

Definition 2.2. A heap edge H = F∪ {arrayAccess} is either an instance field
or a placeholder for an array index access, as in general we cannot statically
determine the accessed array element.

Definition 2.3. A heap sequence H∗ is a finite word over the alphabet contain-
ing all heap edges.

Definition 2.4. An (abstract) heap path P is a pattern over heap edges with the
following syntax:

⟨path⟩ ::= 𝜖
| ⟨concretePrefix⟩ ⟨abstractSuffix⟩

⟨concretePrefix⟩ ::= 𝜖
| ⟨heapEdge⟩.⟨concretePrefix⟩

⟨heapEdge⟩ ::= field | arrayAccess

⟨abstractSuffix⟩ ::= 𝜖
| { ⟨fieldEntries⟩ }, ⟨abstractSuffix⟩

⟨fieldEntries⟩ ::= ⟨fieldEntry⟩
| ⟨fieldEntry⟩, ⟨fieldEntries⟩

so that each ⟨heapEdge⟩ occurs atmost once in ⟨fieldEntries⟩

⟨fieldEntry⟩ ::= ⟨heapEdge⟩[𝑛,⟨upperBound⟩] where 𝑛 ∈ ℕ

⟨upperBound⟩ ::= 0 | 1 | *

Definition 2.5 (Semantics). The semantics of the heap path syntax are defined
by a set of inference rules and axioms. If a heap sequence 𝑠 ∈ H∗ matches a
path 𝑝 ∈ P, then 𝑠 ⇓ 𝑝. Note that ℎ𝑛 is the n-fold repetition of ℎ, i.e. ℎ𝑛 =
ℎ⋯ℎ⏟
𝑛 times

. In the following inference rules,

• ℎ denotes a heap edge

• 𝑠 and pre denote a heap sequence

12

• 𝑝 denotes a heap path

• suf denotes an abstract suffix

Let adjustBounds be a function that reduces the lower and upper bounds of a
matching heap edge by the appropriate amount

adjustBounds(ℎ𝑠, ℎ[𝑛,𝑚], 𝑠) ∶= ℎ𝑠 ⧵ {ℎ[𝑛,𝑚]} ∪ {ℎ[max(0,𝑛−|𝑠|ℎ),max(0,𝑚−|𝑠|ℎ)]}

where for all 𝑛 ∶ ℕ, ∗−𝑛 ∶= ∗ and |𝑠|ℎ denotes the amount of elements ℎ in a
sequence 𝑠.

𝜖 ⇓ 𝜖 (P-epsilon)

pre ⇓ pre (P-prefix-empty)

𝑠2 ⇓ suf

pre.𝑠2 ⇓ pre suf
(P-prefix)

𝜖 ⇓ ℎ[0,𝑛] (P-entry-eps)

𝑛 ≤ 1
ℎ ⇓ ℎ[𝑛,1] (P-entry-one)

𝑚 ≥ 𝑛
ℎ𝑚 ⇓ ℎ[𝑛,∗] (P-entry-many)

∃ℎ[𝑛,𝑚] ∈ hs, 𝑠1 ⇓ ℎ[𝑛,𝑚] 𝑠2 ⇓ adjustBounds(hs, ℎ[𝑛,𝑚], 𝑠1), suf
𝑠1.𝑠2 ⇓ hs, suf

(P-entries-incomp)

∃ℎ[𝑛1,𝑚1]
1 ∈ ℎ𝑠1, 𝑠1 ⇓ ℎ[𝑛1,𝑚1] ∀ℎ𝑠2 ∈ suf,∀ℎ[𝑛2,𝑚2]

2 ∈ ℎ𝑠2, ℎ1 ≠ ℎ2 𝑠2 ⇓ suf

𝑠1.𝑠2 ⇓ ℎ𝑠1, suf
(P-entries-order)

Definition 2.6 (Equivalence). Two paths 𝑝1, 𝑝2 ∶ P are equivalent (denoted 𝑝1 ≡
𝑝2) iff for all heap sequences 𝑠, 𝑠 ⇓ 𝑝1 iff 𝑠 ⇓ 𝑝2.

Definition 2.7 (Concatenation). The concatenation 𝑝1.𝑝2 ∶ P of two paths 𝑝1, 𝑝2 ∶
P is an operation defined so that the following inference rule holds

𝑠1 ⇓ 𝑝1 𝑠2 ⇓ 𝑝2

𝑠1.𝑠2 ⇓ 𝑝1.𝑝2
(P-concat)

13

Definition 2.8 (Alternation). The alternation 𝑝1|𝑝2 ∶ P of two paths 𝑝1, 𝑝2 ∶ P
is an operation defined so that the following inference rules hold

𝑠 ⇓ 𝑝1

𝑠 ⇓ 𝑝1|𝑝2
(P-alter-left)

𝑠 ⇓ 𝑝2

𝑠 ⇓ 𝑝1|𝑝2
(P-alter-right)

Remark 2.1. The actual implementation of heap paths has the following struc-
ture:

1. A concrete prefix sequence 𝑝𝑟𝑒 ∈ H∗

2. An abstract suffix consisting of a 4-tuple with

(a) a flag whether the suffix matches the empty path 𝜖
(b) a partial function 𝑜𝑎 ∶ H ↦ {0, 1,∗} so that for every matching heap

sequence, all heap edges ℎ contained in the heap sequence occur at
most 𝑜𝑎(ℎ) times

(c) a partial function 𝑢𝑎 ∶ H ↦ ℕ so that for every matching heap se-
quence, all heap edges ℎ occur at least 𝑢𝑎(ℎ) times

(d) a partial order 𝑓 < 𝑔 so that if 𝑓 < 𝑔, then the sequence only matches
if no 𝑓 occurs after 𝑔

2.3 Heap-shape analysis

A shape analysis is a static analysis that determines information about allo-
cated data structures in a program. We require that the used shape analysis is
sound, i.e. that the determined information is true for every program input.

Definition 2.9. A heap-shape analysis is a path-sensitive analysis that provides
a function reachableAt ∶ (Stmt,Refs) → Refs ↦ P which given a statement and
a base reference provides a partial function of all local variables referring to
an object reachable from the base reference to a heap path describing where
that object is reachable from the given base. Path-sensitive means that the
analysis doesn’t simply check whether 𝑥 is reachable from 𝑦 but returns an
overapproximation of all paths to 𝑥 from 𝑦.

As long as the used heap-shape analysis is path-sensitive and sound, it is
irrelevant what analysis is used exactly. In principle even non-path-sensitive
shape analyses can be used by assuming a path matching every heap sequence
for all reference.

14

2.4 Soot

Soot [6] is a Java framework which provides a set of intermediate representa-
tions and APIs for analysis and optimisation of Java bytecode. The primary
intermediate language used for analyses is Jimple; other representations in-
clude BAF, a stack-based language, Shimple, a static single assignment variant
of Jimple, and Grimple, a form of Jimple suitable for decompiling.

Soot’s execution is divided into packs, with each pack containing phases—
phases being where the actual analyses are run. Usually execution follows the
following order:

1. The Jimple body creation pack (jb) is applied to each method body, which
transforms Java bytecode into Jimple code.

2. The 4 following whole-program packs are applied. These contain all in-
terprocedual analyses as each phase in this pack runs exactly once.

(a) call graph pack (cg)

(b) whole-jimple transformation pack (wjtp)

(c) whole-jimple optimisation pack (wjop)

(d) whole-jimple annotation pack (wjap)

3. After that, a set of per-method jimple transformation, optimisation and
annotation packs is applied (jtp, jop and jap)

4. Finally, the Jimple bodies are converted into the bytecode precursor BAF in
the bb pack and tags are aggregated in the tag pack, for example making
sure that for each line number, only one tag exists.

2.4.1 Jimple

Jimple [6] is a representation of Java bytecode which is well-suited for static
analyses and program transformations. Firstly, Jimple is compact; it has es-
sentially only 11 types of statements and 19 instructions in total, compared to
more than 200 instructions in Java bytecode. Secondly, every statement is in
3-address form, i.e. instructions are kept as simple as possible, most of them
having the form x = y op z. Additionally, the stack has been eliminated and
replaced by local variables. All implicit references to stack positions are now
explicit references to locals. Finally, all local variables are typed with either a
primitive, class or interface type. Due to type erasure in Java bytecode, support
for generic types is missing.

15

2.4.1.1 Language description

Jimple has 11 types of statements, out of which assignStmt, identityStmt and
invokeStmt are relevant to this thesis.

• assignStmt is either an assignment of an rvalue to a local or an immediate
to a static field, an instance field or an array reference. An rvalue is a
static field or instance field access, an array reference, an immediate or an
expression and an immediate is a local or a constant.

• identityStmt is used to assign locals to special values such as this, pa-
rameter references or a caught exception.

• invokeStmt invokes a method and ignores the result

An expression can be one of the following:

• an usage of a binary operator such as + on two immediates

• a type cast

• a check whether an immediate is an instance of some type

• one of the following method invocations

– specialinvoke, which is, e.g., an invoke of a constructor method

– interfaceinvoke, which is a call of a method defined in an interface

– virtualinvoke, which is a regular method call

– staticinvoke, which calls a static method

• an instantiation of a new reference type (note that this doesn’t call the
actual constructor)

• an instantiation of an array or multi-array of some type with dimensions
stored in immediates.

• the length of an immediate in case the immediate is an array

• the negative of an immediate in case the immediate is a number

16

⟨stmt⟩ ::= ⟨assignStmt⟩ | ⟨identityStmt⟩ | ⟨gotoStmt⟩
| ⟨ifStmt⟩ | ⟨invokeStmt⟩ | ⟨switchStmt⟩
| ⟨monitorStmt⟩ | ⟨returnStmt⟩ | ⟨throwStmt⟩
| ⟨breakpointStmt⟩ | ⟨nopStmt⟩

⟨assignStmt⟩ ::= local = ⟨rvalue⟩;
| field = ⟨imm⟩;
| local.field = ⟨imm⟩;
| local[⟨imm⟩] = ⟨imm⟩;

⟨identityStmt⟩ ::= local := @this: type;
| local := @parameter𝑛: type;
| local := @exception;

⟨gotoStmt⟩ ::= goto label;

⟨ifStmt⟩ ::= if ⟨conditionExpr⟩ goto label;

⟨invokeStmt⟩ ::= invoke ⟨invokeExpr⟩;

⟨switchStmt⟩ ::= lookupswitch ⟨imm⟩ {
case value1: goto label1;
⋯
case value𝑛: goto label𝑛;
default: goto defaultLabel; };

| tableswitch ⟨imm⟩ {
case low: goto lowLabel;
⋯
case high: goto highLabel;
default: goto defaultLabel; };

⟨monitorStmt⟩ ::= entermonitor ⟨imm⟩; | exitmonitor ⟨imm⟩;

⟨returnStmt⟩ ::= return ⟨imm⟩; | return;

⟨throwStmt⟩ ::= throw ⟨imm⟩;

⟨breakpointStmt⟩ ::= breakpoint;

⟨nopStmt⟩ ::= nop;

Figure 2.1: Jimple grammar—statements

17

⟨imm⟩ ::= local | constant

⟨conditionExpr⟩ ::= ⟨imm⟩ ⟨condop⟩ ⟨imm⟩

⟨condop⟩ ::= > | < | = | != | <= | >=

⟨rvalue⟩ ::= ⟨concreteRef ⟩ | ⟨imm⟩ | ⟨expr⟩

⟨concreteRef ⟩ ::= field | local.field | local[⟨imm⟩]

⟨invokeExpr⟩ ::= specialinvoke local.method(⟨imm⟩,⋯,⟨imm⟩)
| interfaceinvoke local.method(⟨imm⟩,⋯,⟨imm⟩)
| virtualinvoke local.method(⟨imm⟩,⋯,⟨imm⟩)
| staticinvoke method(⟨imm⟩,⋯,⟨imm⟩)

⟨expr⟩ ::= ⟨imm⟩ ⟨binop⟩ ⟨imm⟩
| (type) ⟨imm⟩
| ⟨imm⟩ instanceof type
| ⟨invokeExpr⟩
| new refType
| newarray(type)[⟨imm⟩]
| newmultiarray(type)[⟨imm⟩] ⋯ [⟨imm⟩] []*
| length ⟨imm⟩
| neg ⟨imm⟩

⟨binop⟩ ::= + | - | * | / | % | rem | << | <<<
| >> | & | | | cmp | cmpg | cmpl
| ⟨condop⟩

Figure 2.2: Jimple grammar—expressions

18

CHAPTER 3

Reachable type analysis

3.1 Semantics

In order to write a static analysis for determining a reachable type set, we first
need to define what reachable types are: the set of types actually reachable
from some object at runtime.

Definition 3.1. The reachable type set RTS = JT ↦ P is defined as a partial
function from Java types JT to heap paths P. In addition to the operations
on partial functions (see definition 2.1) we define the following operations on
reachable type sets:

• The sum of two reachable type sets 𝑠1, 𝑠2 ∶ RTS is defined by

𝑠1 + 𝑠2 ∶= 𝑠1 ⊕ 𝑠2 ∪ {ty → 𝑠1(ty)|𝑠2(ty) | ty ∈ Dom(𝑠1 ∩ 𝑠2)}

• Given a path 𝑝 ∶ P and a reachable type set 𝑠 ∶ RTS the type set with
prepended path 𝑝.𝑠 is defined by

𝑝.𝑠 ∶= {𝑡 → 𝑝.𝑠(𝑡) | 𝑡 ∈ Dom(𝑠)}

• Analogous the type set with appended path 𝑠.𝑝 is given by

𝑠.𝑝 ∶= {𝑡 → 𝑠(𝑡).𝑝 | 𝑡 ∈ Dom(𝑠)}

• The operation access ∶ (RTS,H∗) → RTS returns the reachable type set
after accessing a sequence of heap edges and is defined by

access(𝑠, ℎ𝑠) ∶= {𝑡 → 𝑝′ | 𝑡 ∈ Dom(𝑠), 𝑠(𝑡) ≡ ℎ𝑠.𝑝′}

19

For the definition of runtime reachable types we require an exact represen-
tation of heap sequences; this is provided by exact reachable type sets.

Definition 3.2. An exact reachable type set RTSexact = JT ↦ 𝒫(H∗) is a variant
of reachable type sets used for theoretical considerations of runtime reachable
types that replaces the overapproximating heap path P with a set of exact heap
sequences 𝒫(H∗).

• The sum of two exact reachable type sets 𝑠1, 𝑠2 ∶ RTSexact is defined by

𝑠1 + 𝑠2 ∶= 𝑠1 ⊕ 𝑠2 ∪ {ty → 𝑠1(ty) ∪ 𝑠2(ty) | ty ∈ Dom(𝑠1 ∩ 𝑠2)}

• Given a heap sequence ℎ ∶ H∗ and an exact reachable type set 𝑠 ∶ RTSexact

the type set with prepended path 𝑝.𝑠 is defined by

ℎ.𝑠 ∶= {𝑡 → {ℎ.ℎ𝑠 | ℎ𝑠 ∈ 𝑠(𝑡)} | 𝑡 ∈ Dom(𝑠)}

• Analogous the type set with appended heap sequence 𝑠.ℎ is given by

𝑠.ℎ ∶= {𝑡 → {ℎ𝑠.ℎ | ℎ𝑠 ∈ 𝑠(𝑡)} | 𝑡 ∈ Dom(𝑠)}

• The operation access ∶ (RTSexact,H∗) → RTSexact returns the exact reach-
able type set after accessing a sequence of heap edges and is defined by

access(𝑠, ℎ) ∶= {𝑡 → ℎ𝑠 | 𝑡 ∈ Dom(𝑠), ℎ𝑠 = {ℎ′ | ℎ.ℎ′ ∈ 𝑠(𝑡)}, |ℎ𝑠| > 0}

With RTSexact we can then define the theoretical reachable types of a refer-
ence at runtime.

Definition 3.3 (Runtime reachable types). Let RT𝑐 ∶ Refs → RTSexact denote
the exact reachable type set of some reference with the memory state 𝑐 (i.e.
register, stack, and heap content) and class(𝑟) be the most specific class of the
object referenced by 𝑟. The fields of a class cls are denoted as F(cls) and the
size of the array referenced by 𝑟𝑎 is |𝑟𝑎|. Then RT𝑐 is defined as follows where
𝑟 denotes a reference to a class and 𝑟𝑎 an array reference:

RT𝑐(𝑟) ∶= {class(𝑟) → {𝜖}} + ∑
𝑓∈F(class(𝑟))

𝑓.RT𝑐(𝑟.𝑓)

RT𝑐(𝑟𝑎) ∶=
|𝑟𝑎|

∑
𝑖=0

𝑖.RT𝑐(𝑟[𝑖])

20

Remark 3.1. In case we encounter an cyclic reference such as in

1 List xs = new List();
2 xs.next = xs;

we have an infinite heap sequence set for xs

{List → {𝜖,next,next.next,⋯}}

Remark 3.2. The runtime reachable types are exact. For all 𝑟 ∶ Refs and heap
sequences 𝑝𝑎𝑡ℎ starting from 𝑟, the following holds:

access(𝑅𝑇𝑐(𝑟), 𝑝𝑎𝑡ℎ) = 𝑅𝑇𝑐(𝑟.𝑝𝑎𝑡ℎ)

3.2 Flow analysis

Our reachable type analysis is implemented as a Soot forward data flow anal-
ysis on a control-flow graph, returning a parametric method result that can be
instantiated with varying argument sets. As the reachable types analysis re-
quires analysis results of all invoked methods, each result is stored in a map of
methods to analysis results. If a new method has to be analysed, the analysis
is performed recursively and the result is added to the map for future use.

Definition 3.4. A parametric type set PTS = (RTS,ℕ ↦ P) is a 2-tuple of a
reachable type set RTS as defined in definition 3.1 and a partial function ℕ ↦
P from the natural numbers to heap paths used for storing placeholders for
arguments where the heap path describes where the reference to the argument
is reachable.

• The sum pts1 + pts2 ∶ PTS of two parametric type sets pts1,pts2 ∶ PTS is
defined as

(rts1, 𝑝1) + (rts2, 𝑝2) ∶= (rts1 + rts2, 𝑝1 ⊕𝑝2 ∪
{𝑛 → 𝑝1(𝑛)|𝑝2(𝑛) | 𝑛 ∈ Dom(𝑝1 ∩𝑝2)})

• The function apply ∶ (PTS,PTS∗) → PTS is used to simulate the effects
of a method invoke on the parametric type set. It is passed a sequence of
parametric type sets for each passed argument and returns the updated
parametric type set. The definition is

apply((𝑟𝑡𝑠, 𝑝𝑠), 𝑎𝑟𝑔𝑠) ∶= (𝑟𝑡𝑠,∅) + ∑
𝑛∈Dom(𝑝𝑠)

𝑝𝑠(𝑛).𝑎𝑟𝑔𝑠𝑛

21

Example 3.1. The application of a parametric type set 𝑝𝑡𝑠, given by

𝑝𝑡𝑠 = ({List → {next[0,∗]}}, {0 → 𝜖, 2 → value})

to a sequence of arguments args defined by

args = ((∅,∅), (∅,∅), ({Object → 𝜖},∅))

is the following parametric type set

apply(𝑝𝑡𝑠,args) = ({List → {next[0,∗]},Object → value})

Definition 3.5. A parametric method result PMR = (PTS,PTS∗) is a 2-tuple
consisting of

1. a parametric type set containing the return value’s reachable types

2. a sequence of parametric type sets with the updated arguments’ reachable
types

• The apply ∶ (PMR,PTS∗) → PMR operator for method results is defined
by applying the argument sets on each underlying set:

apply((retPts,argsPts), 𝑎𝑟𝑔𝑠) ∶=(apply(retPts, 𝑎𝑟𝑔𝑠),
(apply(argsPts𝑖, 𝑎𝑟𝑔𝑠))𝑖∈[0,|argsPts|])

• The sumof two parametricmethod results for the samemethod pmr1,pmr2 ∶
PMR is the sum of its components:

(𝑟1, 𝑎1) + (𝑟2, 𝑎2) ∶= (𝑟1 + 𝑟2, (𝑎1,𝑖 +𝑎2,𝑖)𝑖∈[0,|𝑎1|])

Example 3.2. Consider the following Java code:

1 public static List setValue(Object value, List xs) {
2 xs.value = value;
3 return xs;
4 }

Then the parametric method result for List setValue(Object,List) is

((∅, {0 → value, 1 → 𝜖})⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
return value type set

, ((∅, {0 → 𝜖})⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
first argument

, (∅, {0 → value, 1 → 𝜖})⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
second argument

))

22

Definition 3.6. The control-flow graph 𝐺(𝑚) = (𝑉 ⊆ Stmt, 𝐸 ⊆ 𝑉 × 𝑉) of a
Jimple method𝑚 is a directed graph where the vertices are themethod’s Jimple
statements and there exists an edge 𝑣1 → 𝑣2 iff execution can progress from 𝑣1

to 𝑣2. Its only source is the first statement of the Jimple method and its sinks
are the return points.

Example 3.3. To create a control-flow graph from Java code, it first has to be
converted into Jimple statements.

1 public Object constructList(Object x) {
2 List orig = new List();
3 List xs = orig;
4

5 for (int i = 0; i < 100; i++) {
6 if (x != null) {
7 xs.value = x;
8 } else {
9 xs.value = new Unit();

10 }
11

12 xs.next = new List();
13 xs = xs.next;
14 }
15 return orig;
16 }

The loop structure and if/else branch are easily recognizable and statements
are fairly complicated. For analysis puproses, the Java code has to be trans-
formed into Jimple code. The following code is the Jimple equivalent of the
Java code above. It can then be processed into a control-flow graph.

23

1 public java.lang.Object constructList(java.lang.Object) {
2 ListUtils r0;
3 java.lang.Object r1;
4 List r2, $r3, $r5, r6;
5 Unit $r4;
6 int i0;
7

8 r0 := @this: ListUtils;
9 r1 := @parameter0: java.lang.Object;

10

11 $r3 = new List;
12 specialinvoke $r3.<List: void <init>()>();
13

14 r2 = $r3;
15 r6 = r2;
16 i0 = 0;
17 label1:
18 if i0 >= 100 goto label4;
19 if r1 == null goto label2;
20 r6.<List: java.lang.Object value> = r1;
21 goto label3;
22

23 label2:
24 $r4 = new Unit;
25 specialinvoke $r4.<Unit: void <init>()>();
26 r6.<List: java.lang.Object value> = $r4;
27

28 label3:
29 $r5 = new List;
30 specialinvoke $r5.<List: void <init>()>();
31 r6.<List: List next> = $r5;
32 r6 = r6.<List: List next>;
33 i0 = i0 + 1;
34 goto label1;
35

36 label4:
37 return r2;
38 }

24

As we can see, our high-level Java code with a for-loop got transformed into
unnested code reminiscent of Java bytecode and assembly. The for-loop be-
came a flat construct:

1 label1:
2 if i0 >= 100 goto label4;
3 // loop body
4 i0 = i0 + 1;
5 goto label1;
6 label4:
7 return r2;

Similarly, the if/else statement also became a series of gotos:

1 if r1 == null goto label2;
2 // if body
3 goto label3;
4 label2:
5 // else body
6 label3:
7 // remainder

Note that there are some dissimilarities with Soot’s Jimple output and our Jim-
ple syntax. External Jimple output includes method and variable declarations
which are not part of the actual Jimple statements and thus also not included
in the control-flow graph.

public java.lang.Object constructList(java.lang.Object) {
ListUtils r0;
java.lang.Object r1;
List r2, $r3, $r5, r6;
Unit $r4;
int i0;
// ...

}

The resulting control-flow graph is given below:

25

r0 := @this

r1 := @parameter0

$r3 = new List

specialinvoke $r3.<init>()

r2 = $r3

r6 = r2

i0 = 0

if i0 >= 100 goto label4

if r1 == null goto label2 return r2

goto label4

r6.value = r1 $r4 = new Unit

goto label2

goto label3

specialinvoke $r4.<init>()

$r5 = new List

r6.value = $r4

specialinvoke $r5.<init>()

r6.next = $r5

r6 = r6.next

i0 = i0 + 1

goto label1

26

Here we can see the branches and loop structure again that became less
obvious in the Jimple code, such as the loop structure in fig. 3.1 or the branch
structure in fig. 3.2.

if i0 >= 100 goto label4

loop body return r2

goto label4

goto label1

Figure 3.1: For loop in the control-flow graph

if r1 == null goto label2

if body

else body

goto label2

goto label3

remainder

Figure 3.2: If/else branch in the control-flow graph

27

Definition 3.7 (Possible types of a right-hand value). Given two partial functions
𝑎,𝑏 ∶ Refs ↦ PTS where 𝑎 is the analysis state before the current statement
and 𝑏 is the new state and a Jimple rvalue (see section 2.4.1), the function
pt ∶ (Refs → PTS)2 × rvalue → PTS is defined by performing case analysis on
the rvalue:

Case 1: Local variables and static fields
For local variables and static fields, return the previous set in 𝑎. This set is
always defined as uninitialised variables cannot occur.

Case 2: Instance fields and array accesses
For instance field accesses r0.value or array accesses r0[idx] retrieve the
preceding type set 𝑝𝑡𝑠 for r0 from 𝑎 and return access(𝑝𝑡𝑠,value) respectively
access(𝑝𝑡𝑠,arrayAccess). If there is no matching type set, then use the empty
type set as the field is null if it never occurred in the base local’s type set.

Case 3: invokeExpr
Invoke expressions are handled differently based on whether static or dynamic
dispatch is used. For specialinvoke and staticinvoke, static dispatch is
used; analysing the invoke target is sufficient.

However for dynamic invokes (interfaceinvoke and virtualinvoke), all pos-
sible concrete subclasses of the target method’s class have to be analysed, with
the results added together: If the type set of the base local contains a place-
holder, analyse all possible implementations; otherwise it is sufficient to anal-
yse the types whose paths match 𝜖.

A reachable type analysis is performed on the invoked method (or a previously
computed method result is retrieved), instantiating it with the invoke argu-
ments’ type sets. The result is then used to update the values and heap-shape
predecessors of the passed arguments’ sets like in the assignStmt case in algo-
rithm 3.1, and the return set is used as the returned result.

Case 4: castExpr
The cast’s underlying reference’s set is returned.

Case 5:
For all other expressions such as new, instanceof and so on, the type of the
expression is returned.

Example 3.4. We consider the possible types of a right-hand value after the first
3 statements in this method execute:

28

1 public void example() {
2 List xs = new List();
3 xs.value = new Unit();
4 Object obj = this;
5 }

The state after line 4 is then

𝑎 ∶= {xs → ({List → 𝜖, Unit → value},∅),thing → (∅, {0 → 𝜖})}

and 𝑏 ∶= 𝑎. The possible types for different right-hand values after line 3 are
then:

pt(𝑎, 𝑏, 𝑟0) = ({List → 𝜖, Unit → value},∅)
pt(𝑎, 𝑏, 𝑟0.value) = ({Unit → 𝜖},∅)

pt(𝑎, 𝑏,setValue(obj,xs)) = ({List → 𝜖, Unit → value}, {0 → obj})
with 𝑏 = {xs → ({List → 𝜖, Unit → value}, {0 → value})

, obj → (∅, {0 → 𝜖})}
pt(𝑎, 𝑏,new Object) = ({Object → 𝜖},∅)

where the parametric method result for setValue is computed in example 3.2.
The flow-through function is used to propagate the state along the control-

flow graph.

Algorithm 3.1 (Flow-through function). The function flowThrough ∶ (Refs ↦
PTS, Stmt) → Refs ↦ PTS is defined for 𝑎 ∶ Refs ↦ PTS and 𝑠𝑡𝑚𝑡 ∶ Stmt as
follows:

1. Initializing the new state with the preceding state 𝑏 ∶= 𝑎

2. Performing case analysis on the 𝑠𝑡𝑚𝑡:

Case 1: assignStmt
If we have an assignStmt, which has the form x = y, use definition 3.7 to
calculate the possible types rvPts = pt(𝑎, 𝑏, 𝑦) of the rvalue y.

Case 1.1: x is a local variable
If x is a local variable, just set 𝑏(x) = rvPts

Case 1.2: x is a field or array reference
Otherwise x is a field or array reference. This case causes heap data to
change, requiring us to take heap shape into account. Using the heap-
shape analysis we calculate all predecessors of x, giving us a partial

29

function preds ∶ Refs ↦ P from references to paths. Then for each
𝑣 ∈ Dom(preds), 𝑏(𝑣) = 𝑏(𝑣) + preds(𝑣).rvPts

Case 2: identityStmt
For an identityStmt local = @this or local = @parameter𝑛, set 𝑏(local) =
(∅, {𝑖𝑑𝑥 → 𝜖}) where 𝑖𝑑𝑥 = 0 in the @this case, 𝑛 in the @parameter𝑛
case when the method being analysed is static, or 𝑛+ 1 otherwise.

Case 3: invokeStmt
An invokeStmt consists solely of an invokeExpr. This case is handled by
invoking pt(𝑎, 𝑏, invokeExpr).

3. Return 𝑏.

We require a framework in which we can apply our flow-through function.
This is provided by the forward data flow analysis, which applies the flow-
through function to every node of the control flow graph.

Algorithm 3.2 (Forward data flow analysis). Given a control-flow graph (𝑉 ⊆
Stmt, 𝐸) the forward data flow analysis creates two partial functions 𝑎,𝑏 ∶
Stmt ↦ Refs ↦ PTS where 𝑎 is the analysis state before the given statement
and 𝑏 is the state after. The analysis is performed by traversing the graph
starting at the entry point. For each stmt ∈ 𝑉:

Case 1: 𝑎(stmt) undefined
If 𝑎(stmt) is undefined, we’re at the entry point. Set 𝑎(stmt) ∶= ∅ and go to
case 2.

Case 2: 𝑏(stmt) undefined
If 𝑏(stmt) is undefined, the node hasn’t been examined yet.
Set 𝑏(stmt) = flowThrough(𝑎(stmt), 𝑠𝑡𝑚𝑡).

Case 3:
If both functions are defined at stmt, we perform a fixpoint iteration by set-
ting 𝑏(stmt) = 𝑓𝑙𝑜𝑤𝑇ℎ𝑟𝑜𝑢𝑔ℎ(𝑎(stmt), stmt). If this did not cause a change
in 𝑏(stmt), we remove all predecessors of stmt from the control-flow graph to
stop the fixpoint iteration.

After we set 𝑏(stmt), we need to update the partial function 𝑎 for all suc-
cessors succ(stmt): For all next ∈ succ(stmt):

Case 1: 𝑎(next) undefined
If 𝑎(next) undefined, set 𝑎(next) = 𝑏(stmt)

30

Case 2:
Otherwise, set 𝑎(next) = 𝑎(next) + 𝑏(stmt)

We do not need to iterate manually, as loops in the control-flow graph already
cause iterations.

Example 3.5. Using the code for setValue, we can now derive how the state
after each line is computed. The example() method consists of the following
Jimple statements:

1 r0 = @this;
2 r1 = new List;
3 specialinvoke r1.<init>();
4 r2 = new Unit;
5 specialinvoke r2.<init>();
6 r1.value = r2;
7 r3 = r0;

For simplicity, let 𝑠𝑛 denote the statement at line 𝑛. The initial state 𝑎(𝑠0) is
empty. Applying the flow-through function to determine 𝑏(𝑠0) = flowThrough(𝑎(𝑠0), 𝑠0)
we can see that the identityStmt case is chosen. Thus 𝑏(𝑠0) = {r0 → (∅, {0 →
𝜖})}. Then we set 𝑎(𝑠1) = 𝑏(𝑠0) and continue.

Calculating 𝑏(𝑠1) = flowThrough(𝑎(𝑠1), 𝑠1) the assignStmt case in flowThrough
is used. Then pt(𝑎(𝑠1), 𝑏(𝑠1),new List) = ({List → 𝜖},∅) and 𝑏(𝑠1) =
𝑏(𝑠0) + {r1 → ({List → 𝜖},∅)}

The constructors of List and Unit are empty, leading to 𝑏(𝑠3) = 𝑎(𝑠3)
and 𝑏(𝑠5) = 𝑎(𝑠5). For 𝑠4 the procedure is identical to 𝑠2, leading to 𝑏(𝑠4) =
𝑏(𝑠3) + {r2 → ({Unit → 𝜖},∅)}

Finally after 𝑠7 we have state

𝑏(𝑠7) = {r0 → (∅, {0 → 𝜖}),r1 ↦ ({List → 𝜖},∅)
, r2 ↦ ({Unit → 𝜖},∅),r3 → (∅, {0 → 𝜖})}

We require a summary of the effects a method invocation has. This is given
by the parametric method result from definition 3.5.

Definition 3.8 (Method result). After performing the forward data flow analysis
on a method with control-flow graph (𝑉,𝐸) with result 𝑎,𝑏 ∶ Stmt ↦ Refs ↦
PTS, a method result for the return points 𝑠𝑟 ∈ sinks(𝑉,𝐸) is a parametric
method result consisting of:

1. The parametric type set at 𝑏(𝑠𝑟) for the returned reference, or the empty
set if the function returns void

31

2. A sequence of sets at 𝑏(𝑠𝑟) for this and all arguments

The actual method result is then the sum of all individual method results.

Example 3.6. Given the following Javamethodwith two return statements where
in the first branch, only String is reachable and in the other branch the whole
type set of argument 𝑥

1 public Object removeNull(Object x) {
2 if (x == null) {
3 return new Nothing();
4 } else {
5 return x;
6 }
7 }

the analysis result has to include both Nothing and the type set for x, as stat-
ically analysing which branch to choose is generally impossible here.

3.3 Correctness

Theorem 3.1. The reachable type analysis is sound modulo static fields—all
types that a reference can possibly reach during the execution of a program
are computed by the flow analysis as long they do not involve static fields across
method boundaries.

Proof. Proof sketch Consider the control-flow graph (𝑉,𝐸) of a method 𝑚 and
let 𝑎,𝑏 ∶ Stmt ↦ Refs ↦ PTS be the results of the forward data flow analysis
on (𝑉,𝐸). For all statements 𝑠 ∈ 𝑉 let 𝑐(𝑠) be the memory state directly after
executing 𝑠 and RT𝑐(𝑠) the actual reachable types at the memory state 𝑐(𝑠)
as in definition 3.3. Furthermore we require a sequence of method argument
type sets args ∶ RTS∗ so that if 𝑚 is a n-ary method (counting this as an
argument), 𝑠0 ∶= 𝑟0 = @this or 𝑠𝑖 ∶= 𝑟𝑖 = @parameter𝑖 if 𝑚 is static, 𝑠𝑖+1 ∶=
𝑟𝑖+1 = @parameter𝑖 otherwise, |args| = 𝑛 and ∀𝑖 ≤ 𝑛,RT𝑐(𝑠𝑖)(𝑟𝑖) ⊆ args𝑖.
This ensures that we can instantiate all parametric type sets to a fully concrete
reachable type set while maintaining soundness. Then for all references 𝑟 in
Dom(𝑏(𝑠)) the propositionRT𝑐(𝑠)(𝑟) ⊆ rtswith (𝑟𝑡𝑠,∅) = apply(𝑏(𝑠)(𝑟),args)
has to hold in order for the analysis to be sound.

Note that 𝑓 ⊆ 𝑔 for 𝑓 ∶ RTSexact, 𝑔 ∶ RTS is defined as follows:

𝑓 ⊆ 𝑔 ∶= ∀ty ∈ Dom(𝑓), ty ∈ Dom(𝑔) ∧∀ℎ ∈ 𝑓(ty), ℎ ⇓ 𝑔(ty)

32

Informally, the idea is that a set of heap sequences matches a heap path iff they
all match—similar to path equivalence.

We perform induction on the construction of RT𝑐(𝑠)(𝑟)

Case 1: Base: RT𝑐(𝑠)(𝑟) = ∅
Trivial.

Case 2: Step: RT𝑐(𝑠)(𝑟) = 𝑅∪ {cls → ℎ𝑠} with 𝑅 ⊆ rts
As 𝑅 ⊆ rts by induction hypothesis, it remains to prove that {cls → ℎ𝑠} ⊆ rts.
First we consider the non-cyclic subset of ℎ𝑠. Then for all ℎ ∈ ℎ𝑠 there exists a
decomposition of the form ℎ = ℎ1.⋯ .ℎ𝑛 and a statement structure of the form

rhn = new cls;
...
rh1.h2 = rh2
ralias.field = rh1
r.h1 = ralias.field

or

rhi = @parameter //some identityStmt
...
rh1.h2 = rh2
ralias.field = rh1
r.h1 = ralias.field

where ralias is a placeholder for possible aliasing between each reference.

Case 2.1: All statements were intraprocedual
If all statements were an assignStmt, then the flow analysis follows each
statement. The first statement’s right-hand value pt(𝑎, 𝑏,new cls) results
in a parametric type set ({cls → 𝜖},∅)which is then propagated along the
statements, with possible aliasing handled by the heap-shape analysis. As
the heap-shape analysis is sound, we can conclude that ℎ ⇓ 𝑏(𝑠)(𝑟)(𝑐𝑙𝑠)
If one of the statements was an identityStmt, then by precondition on the
argument type sets args𝑖, the possible types returned by pt(𝑎, 𝑏, 𝑟𝑖)—where
𝑟𝑖 is the local variable in the appropriate identityStmt as defined above—
should be eventually replaced by the correct type set. However due to an
error when modularising the analysis, this does not work properly for
𝑟𝑖.field-type accesses. In the non-parametric case for some reference 𝑥,
the access 𝑥.field resolves to (∅,∅) if no path matches field. This sim-
ulates the effect of an uninitialised field correctly on a non-parametric set,

33

but not for parametric sets. A possible solution is given chapter 6—as this
was only noticed during the final stages of the thesis there is insufficient
time to provide a proper solution.

Case 2.2: Some statements occur in an invoked method
In case the invoke is statically dispatched, the correct method is chosen
every time. Otherwise for a dynamic invoke 𝑏.𝑚(...) and assuming sound-
ness for 𝑏 then either all possible implementations out of the concrete
reachable type set or all possible implementations period have been cho-
sen, analysed and their method results added together.
Themethod result is then applied to the type sets of the arguments, replac-
ing all eventual placeholders local to the scope of the invoked method with
placeholders local to the scope of the invoking method. The resulting re-
turn and updated argument type sets then (barring the bug with argument
field accesses) propagate the type changes. As every possible method has
contributed to the method result, the actually chosen method’s effects are
also represented in the parametric type sets.

In case there exists a cyclic reference, ℎ𝑠 is infinite. However it has to be peri-
odic, i.e. ℎ𝑠 is decomposable into a finite set of non-cyclic references ℎ𝑠fin and
a finite set of 2-tuples cycles consisting of a prefix ℎpre and an infinite set ℎ𝑠suf
consisting of an iterated suffix ℎsuf so that

ℎ𝑠 = ℎ𝑠fin ∪ ⋃
(ℎpre,ℎ𝑠suf)∈cycles

⋃
ℎsuf∈ℎ𝑠suf

ℎpre.ℎsuf

Then the cycle is created by an assignment of the form 𝑟0.𝑓 = 𝑟1 where 𝑟0 is a
successor of 𝑟1. By soundness of the heap-shape analysis this statement causes
all paths involving 𝑟0 and 𝑟1 to be adjusted for the infinite cycles by setting the
upper bound on all constituent fields to ∗.

We can conclude that 𝑐𝑙𝑠 ∈ Dom(𝑏(𝑠)) and ∀ℎ ∈ ℎ𝑠, ℎ ⇓ 𝑏(𝑠)(𝑐𝑙𝑠).

Theorem 3.2. The flow analysis tracks all execution paths that modify objects
pointed to by references.

Proof sketch. The intraprocedual case is trivial—this is handled by the control-
flow graph. In case we encounter an invokeExpr, the static dispatch cases al-
ways call the same statically known function, and thus are not particularly
interesting.

34

The dynamic dispatch case however takes exactly one code path at runtime
but it is not always possible to decide what code paths it will take at com-
pile time. If the method base object’s type set contains any placeholders, it
is not possible to determine exactly what subclass is called; thus, all subclass
methods are analysed, including the actually used one. If the type set doesn’t
contain any placeholder then due to soundness of the reachable type analysis
we also have the actually used subclass in the type set.

Remark 3.3. The analysis is not complete — there can exist types in the type
set that are unreachable during program execution; see example 3.6.

3.4 Refining heap-shape information

3.4.1 Call devirtualisation

Reachable type analysis can be used to resolve possible dynamic dispatch tar-
gets: Given a virtual invoke statement r.s() the set of possible concrete classes
can be determined as follows: If the type set for 𝑟 contains a placeholder, then
every non-abstract subclass of the type of 𝑟 has to be included. Otherwise it
is sufficient to analyse all subclasses contained at 𝜖. See example 3.7 for an
example application in the reachable type analysis itself.

Example 3.7 (Resolving virtual invokes in the reachable type analysis). Consider
a simplified class hierarchy implementing Jimple statements in Soot.

1 interface Stmt { void apply(Switch) }
2 abstract class DefinitionStmt implements Stmt { /* ... */ }
3 class IdentityStmt extends DefinitionStmt { /* ... */ }
4 class AssignStmt extends DefinitionStmt { /* ... */ }
5 class InvokeStmt implements Stmt { /* ... */ }

The possible types for virtualinvoke x.apply(r) where x has type Stmt
and the type set for x is (∅, {0 → 𝜖}) are the union of the analysis results of
all non-abstract implementations: IdentityStmt.apply, AssignStmt.apply
and InvokeStmt.apply.

However, if the type set of x is ({IdentityStmt → 𝜖},∅) then the result is
just the result of IdentityStmt.apply.

On the other hand if x has type IdentityStmt then the result is always given
by the analysis of IdentityStmt.apply, and analogous with AssignStmt

35

3.4.2 Disproving path existence

Shape analysis frequently has to deal with the question whether there exists
a path from the object referenced by 𝑥 to the one referenced by 𝑦. This can
be quickly disproven by checking whether the type of 𝑦 is contained in the
reachable type set of 𝑥. If it is not contained, then the analysis can immediately
mark the path as non-existing due to contradiction; if there was a path, then it
would have been picked up during the reachable type analysis.

36

CHAPTER 4

Results and evaluation

In order to evaluate the effectiveness of our analysis, we measure the improve-
ment in virtual method resolution by analysing artificial problems1 utilising
dynamic dispatch. We then calculate the size all calculated parametric type
sets and compare the average and maximum size with and without any refine-
ment.

In the following table2, let totalts, avgts resp. maxts be the total, average
resp. maximum amount of types in the concrete type set and totalp, avgp resp.
maxp be the total, average resp. maximum amount of placeholders for method
parameters. Furthermore count denotes the total amount of defined references
in the analysis, i.e. using the definitions from algorithm 3.2 this corresponds
to ∑𝑠∈Stmt |Dom(𝑏(𝑠, 𝑟))|

As we can see, enabling refinement significantly reduced the amount of con-
crete types in the result while leaving the amount of abstract parameters un-
changed. It also reduces the amount of references associated with a parametric
type set, probably because some objects are only reachable if a specific method
is called.

ResultListTest and Level1 use a local variable respectively a reference to a
field of a local variable as the dynamic dispatch base reference. Thus the high-
est accuracy can be achieved here, as it’s generally possible to uniquely restrict
the called method since the heap paths should only consist of a finite sequence.
In contrast to the first two test cases, FiniteListTest and LoopListTest iterate

1Originally it was planned to refine the used heap-shape analysis and use it to measure the
quality of refinement. However due to implementation issues and time constraints integrating
reachable type analysis with the heap-shape analysis was not possible at this point. Addition-
ally, TPDB [7] problems did not utilize dynamic dispatch in a way that caused changes in the
analysis results.

2The different test cases can be found at [8]

37

Without refinement
Test case count totalts totalp avgts avgp maxts maxp
ResultListTest 340 414 89 1.22 0.26 4 1
Level1 519 795 178 1.53 0.34 5 1
FiniteListTest 192 214 68 1.11 0.35 3 1
LoopListTest 343 547 77 1.59 0.22 3 1

With refinement
Test case count totalts totalp avgts avgp maxts maxp
ResultListTest 340 318 89 0.94 0.26 4 1
Level1 499 563 178 1.13 0.36 5 1
FiniteListTest 185 193 68 1.04 0.37 3 1
LoopListTest 336 526 77 1.57 0.23 3 1

Table 4.1: Test results

Change in
Test case count totalts totalp avgts avgp maxts maxp
ResultListTest 0% -23% 0% -23% 0% 0% 0%
Level1 -3.4% -29% 0% -26% +4.0% 0% 0%
FiniteListTest -3.6% -9.8% 0% -6.4% +3.8% 0% 0%
LoopListTest -2.0% -3.8% 0% -1.8% +2.1% 0% 0%

Table 4.2: Result changes with refinement enabled

over a list when performing dynamic dispatch. FiniteListTest constructs the
list sequentially while LoopListTest uses a loop. This causes the heap path of
the base reference to be an abstract path, making dynamic dispatch devirtual-
ization less exact.

Overall a reduction in parametric type set size was achieved every time,
ranging from −3.8% to −29% in total size, signifying an increased analysis ac-
curacy. Peculiarly the highest occurring type set size never changes, but that
is likely an artifact of the used test cases.

38

CHAPTER 5

Related work

5.1 Heap-shape information

Separation logic [9] is an extension of Hoare logic for reasoning about shared
data structures. Its key feature is locality where proofs or specifications of
a subprogram in separation logic only mention the memory portion that is
actually used in the subprogram. Applications include program analyses such
as compositional shape analysis [10] which allows each procedure in a program
to be analysed separately. The techniques developed in compositional shape
analysis are in turn used e.g. in [11].

AProVE [3], Julia [4] or COSTA [5] all developed tools that deal with heap-
shape information, whether using term rewriting systems in AProVE, abstract
interpretation combined with constraint graphs in Julia or abstract interpreta-
tion with propositional formulae in COSTA.

Additionally, graph grammar methods use hyperedge replacement gram-
mars [12] to obtain a finite hypergraph representation of data structures. This
yields a finite state space that can then be further analysed with e.g. model
checking tools.

5.2 Points-to analysis

Points-to analysis, also known as pointer analysis, is a static analysis that cal-
culates the set of references that a reference can possibly take at runtime. Al-
gorithms in weakly typed languages such as Steensgaard’s method [13] cannot
use type information as weakly typed languages support arbitrary casts. How-
ever in strongly typed, object-oriented languages such as C++ or Java algo-

39

rithms such as rapid type analysis [14] or variable type analysis [15] do utilize
and store type information, which can then be used for e.g. call devirtualiza-
tion. These analyses either ignore fields completely in case of a field-insensitive
points-to analysis or do not allow enumerating all fields at which some object
or type occur as is the case for a field-sensitive points-to analysis.

40

CHAPTER 6

Future work

6.1 Current restrictions

Array references and static fields are currently not properly supported due
to lack of implementation in the used heap-shape analysis. Array references
are stored in the base reference whereas static fields are not propagated along
method boundaries.

Recursion is currently unsupported due to both lack of implementation in
the heap-shape analysis and the call graph traversal method used. This ex-
cludes a fairly large class of programs.

6.2 Known issues

Field access on parametric placeholders does not work as expected. This was
unfortunately only noticed in the final stages of the thesis as the current be-
haviour is correct for non-parametric type sets. The following code currently
returns (∅,∅), which is not correct for parametric type sets.

1 public static List getNodes(Tree tree) {
2 return tree.nodes;
3 }

A possible solution would be to use parametric type sets (RTS, (ℕ,P) ↦ P)
and extend the instance field case in pt (definition 3.7) so that the correct type
set is returned. Parameter application would be defined by

apply((𝑟𝑡𝑠, 𝑝𝑠), 𝑎𝑟𝑔𝑠) ∶= (𝑟𝑡𝑠,∅) + ∑
(𝑛,𝑝𝑟𝑒)∈Dom(𝑝𝑠)

𝑝𝑠(𝑛). access(𝑎𝑟𝑔𝑠𝑛, 𝑝𝑟𝑒)

41

Then the above code has a return type set of to (∅, {(0,nodes) → 𝜖}), which
should work as expected. The soundness proof can be corrected by proving
soundness of the access-operator, which should be possible as it is more re-
strictive on exact reachable type sets than parametric type sets.

6.3 Improvements

Type sets included as a dynamic dispatch possibility can be made conditional
on the target type actually being in the callee’s parametric type set when instan-
tiating the parameters. Currently it only checks for possible targets at analysis
and adds all targets if a set placeholder is encountered. The idea behind this is
to emulate the more exact analysis results if it is re-run every time a method in-
vocation is encountered, which predictably significantly worsens performance.

Another area of improvement is adding the reachable types of successors
lazily; upon encountering an assignment of a reference to an instance field,
reachable types of the right-hand side object are currently added to the reach-
able type set instantly. It could be prudent to add them to the reachable type
set only when the original reference no longer exists or the method result is
generated, as that allows the type set for e.g. x.f = y; x.f = z; to be safely
reduced as y is no longer referenced.

6.4 Integration with heap-shape analysis

One of the primary goals when designing this analysis was to use it for refin-
ing a path-sensitive heap-shape analysis. This leads to a situation where the
heap-shape analysis can use reachable type sets for e.g. call devirtualisation
to generate a more exact heap model, while our reachable type analysis uses
heap-shape analysis for information on predecessors of a reference. Iterating
the two analyses can then lead to an increase in exactness at the cost of per-
formance.

42

CHAPTER 7

Conclusion

We have developed a path-sensitive, sound, interprocedual reachable type anal-
ysis that can be used to improve existing tools and analyses. By utilising path-
sensitive information from an existing heap-shape analysis in a data flow anal-
ysis we determine an overapproximation of all possible types reachable from
a given reference along with paths describing where said types actually oc-
cur. We devised a data representation allowing for modular analysis with high
data reuse based on an existing formulation of heap paths. Additionally we
have proven the analysis sound and gave starting points on how to combine
the reachable type analysis with other analyses. Evaluation based on dynamic
dispatch resolution in the analysis itself shows a significant improvement in
accuracy: up to 29% reduction in parametric type set size. Finally we provide
key points on further improving the analysis, such as rectifying the inexactness
in dynamic dispatch caused by the design choice to only run the analysis once
on each method or integrating it with the used heap-shape analysis to allow for
a tradeoff of performance with exactness.

43

44

Bibliography

[1] Y. Sui, Y. Li, and J. Xue. Query-directed adaptive heap cloning for op-
timizing compilers. In Proceedings of the 2013 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO), pages 1–11, Feb
2013.

[2] Mark Marron, Mario Méndez-Lojo , Manuel Hermenegildo , Darko Ste-
fanovic , and Deepak Kapur . Sharing analysis of arrays, collections, and
recursive structures. pages 43–49. Association for Computing Machinery,
November 2008.

[3] Marc Brockschmidt, Richard Musiol, Carsten Otto, and Juergen Giesl. Au-
tomated termination proofs for java bytecode with cyclic data. In CAV,
January 2012.

[4] Enrico Scapin and Fausto Spoto. Field-sensitive unreachability and non-
cyclicity analysis. Sci. Comput. Program., 95:359–375, 2014.

[5] Samir Genaim and Damiano Zanardini. Reachability-based Acyclicity Anal-
ysis by Abstract Interpretation. Theoretical Computer Science, 474:60–79,
2013.

[6] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam,
and Vijay Sundaresan. Soot-a java bytecode optimization framework. In
Proceedings of the 1999 conference of the Centre for Advanced Studies on
Collaborative research, page 13. IBM Press, 1999.

[7] Termination problem data base. http://cl2-informatik.uibk.ac.at/
mercurial.cgi/TPDB.

[8] Test cases for evaluation. https://github.com/KaneTW/
bachelor-thesis-testcases.

45

http://cl2-informatik.uibk.ac.at/mercurial.cgi/TPDB
http://cl2-informatik.uibk.ac.at/mercurial.cgi/TPDB
https://github.com/KaneTW/bachelor-thesis-testcases
https://github.com/KaneTW/bachelor-thesis-testcases

[9] John C. Reynolds. Separation logic: A logic for shared mutable data struc-
tures. In Proceedings of the 17th Annual IEEE Symposium on Logic in Com-
puter Science, LICS ’02, pages 55–74, Washington, DC, USA, 2002. IEEE
Computer Society.

[10] Cristiano Calcagno, Dino Distefano, Peter O’Hearn, and Hongseok Yang.
Compositional shape analysis by means of bi-abduction. SIGPLAN Not.,
44(1):289–300, January 2009.

[11] Infer, a static analysis tool based on separation logic and bi-abduction.
http://fbinfer.com/docs/separation-logic-and-bi-abduction.
html.

[12] Jonathan Heinen, Christina Jansen, Joost-Pieter Katoen, and Thomas Noll.
Verifying pointer programs using graph grammars. Science of Computer
Programming, 97, Part 1:157 – 162, 2015. Special Issue on New Ideas and
Emerging Results in Understanding Software.

[13] Bjarne Steensgaard. Points-to analysis in almost linear time. In Proceedings
of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’96, pages 32–41, New York, NY, USA, 1996. ACM.

[14] David F. Bacon and Peter F. Sweeney. Fast static analysis of c++ virtual
function calls. SIGPLAN Not., 31(10):324–341, October 1996.

[15] Vijay Sundaresan, Laurie Hendren, Chrislain Razafimahefa, Raja Vallée-
Rai, Patrick Lam, Etienne Gagnon, and Charles Godin. Practical virtual
method call resolution for java. SIGPLAN Not., 35(10):264–280, October
2000.

46

http://fbinfer.com/docs/separation-logic-and-bi-abduction.html
http://fbinfer.com/docs/separation-logic-and-bi-abduction.html

	Introduction
	Background
	Partial functions
	Paths
	Heap-shape analysis
	Soot
	Jimple
	Language description

	Reachable type analysis
	Semantics
	Flow analysis
	Correctness
	Refining heap-shape information
	Call devirtualisation
	Disproving path existence

	Results and evaluation
	Related work
	Heap-shape information
	Points-to analysis

	Future work
	Current restrictions
	Known issues
	Improvements
	Integration with heap-shape analysis

	Conclusion
	Bibliography

