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Abstract

Coq is an interactive theorem prover used for many computerized proofs, such
as the proof of the four-color theorem [I0]. We give a short overview over Coq and
discuss methods of integrating it with SAT/SMT solvers. These integrations enhance
Coq’s existing automation tactics and improve the reliability of automated provers by
using a verified program to check their results.

1 Introduction

The usage of interactive theorem provers for both complex proofs [10, 12] and for designing
a foundation for mathematics [17] has been steadily increasing over the years. However,
unlike in informal paper proofs you cannot simply handwave the tedious ”trivial cases”.
This means that a large amount of automation is needed in order for proof complexity to
remain manageable.

Coq already supports a decent amount of decision and semi-decision procedures [0]
such as auto (basic proof tree search), omega (solver for Presburger arithmetic) and many
others. Nevertheless, advances in SMT solvers have not yet carried over into interac-
tive theorem proving, both for performance reasons and difficulties in proving the formal
correctness of algorithms used [15].

In Section [2] we provide an introduction to Coq and the underlying type theory, the
Calculus of Inductive Constructions. Section [3] then details various approaches to using
SAT/SMT solvers in conjunction with Coq.

2 The Coq proof assistant

Coq [7,16] is a proof assistant based on the Calculus of Inductive Constructions (CIC) [8,9],
a type theory with dependent and inductive types. It is both a pure functional program-
ming language and a proof development system.

Coq’s underlying logic can be described as a higher-order intuitionistic predicate logic.
The major difference to classical logic is the absence of the law of excluded middle p V —p.
Formulae in intuitionistic logic are not ’true’ or ’false’ but instead are proven or dis-
proven. The primary benefit of that is that under the Curry-Howard isomorphism, pro-
grams written in the Calculus of Inductive Constructions have a direct syntactic corre-
spondence to proofs in higher-order intuitionistic predicate logic, with the proven the-
orem being the type of the program. Thus when proving something in Coq, it’s pos-
sible to run the proof and compute the resulting object — for example, a proof of



forall n m : nat, exists q : nat, exists r : nat, n = q * m + rcanberunin
order to compute q and r.

As a consequence, not all theorems that are true in classical logic are provable in
intuitionistic logic. For example, consider the De Morgan’s laws

~(PAQ) = ~PV-Q (1)
“(PVQ) = -PA-Q (2)
“PV-Q = —(PAQ) (3)
-PA-Q = —(PVQ) (4)

Out of these, (1) is unprovable in intuitionistic logic, as it requires the law of excluded
middle to prove.

2.1 Programs are proofs

Consider the trivial proposition True, consisting of an inductive type with one nullary
constructor and the unprovable proposition False with no constructors: The proposition

Inductive True : Prop :=

T 1 Inductive False : Prop := .

that True implies itself has type True -> True and is proven by
fun x : True => x. Similarly ex falso quodlibet can be expressed with the following
theorem and (tactic-based) proof:

Theorem ex_falso : forall P : Prop, False -> P.
intros P H.
case H.

Qed.

This introduces two new hypotheses, P : PropandH : False and then does case analysis
on H. Since False has no constructors, this completes the proof. We’ll come back to the
concept of tactics later.

Checking the generated program using Print ex_falso. we see:

ex_falso = fun (P : Prop) (H : False)
=> match H with (* False has no constructors *) end

2.2 Inductive types

Coq’s inductive types are a generalisation of algebraic data types that exist in most func-
tional languages. The singleton type unit is defined by

Inductive unit : Set :=
| tt.

The difference between inductive type definitions and other kinds of definitions such as
Definition is that inductive types automatically admit an induction principle, as seen in
this theorem and proof:

Theorem unit_is_singleton : forall x : unit, x = tt.
induction x. (* goal %s now tt = tt *)
reflexivity. (* which holds because of reflexivity *)
Qed.



In this case, the induction principle is
unit_ind : forall P : unit -> Prop, P tt -> forall u : unit, P u

Astute readers notice that unit and True are very similar — the only difference being
that one is in Set while the other is in Prop. In general, Set is the type of types used
in programming and Prop is the type of propositions. This convention is important for
several reasons. First, it allows you to extract a program living in Set to an easier to
optimize language such as Haskell while ignoring the (runtime-irrelevant) proofs in Prop.
Secondly, Prop is impredicative, meaning that quantifying over Prop also yields Prop:

(forall T : Prop, T) : Prop
(forall P Q : Prop, P\/ Q -> Q \/ P) : Prop
(forall T : Set, T) : Type (* not Set! *)

This is mostly for consistency reasons when combined with the law of excluded middle —
an impredicative Set causes inconsistency when axioms of choice are used in combination
with e.g. excluded-middle [6].

Similar to other functional languages we can define the type of booleans bool as

Inductive bool : Set :=
| true
| false.

Note that true and false are completely different from inhabited and uninhabited propo-
sitions. All functions have to be total, which means that functions returning bool have to
be decidable. Propositions, on the other hand, can be undecidable — a proposition is only
decidable when P \/ “P holds (without assuming excluded-middle). In constructive logic,
that statement means that we can construct a proof object for P or P -> False. It’s clear
that that doesn’t hold for every Prop; for instance, equality between natural numbers is
decidable (either n = morn <> m), but equality between functions from natural numbers
to themselves is not: asserting the equality of two arbitrary functions £ g : nat -> nat
requires one to check an infinite amount of values. However, being able to use such a
theorem is still useful, since you can use it as a hypothesis when proving other theorems.

All the examples above don’t actually require the induction principle — since there is
no recursion, simple case analysis is sufficient. The natural numbers are a type where
induction is actually required:

Inductive nat : Set :=
| 0 : nat
| S : nat -> nat.

We can pattern match on it with match, write terminating recursive functions with
Fixpoint and define and prove theorems about it with Theorem

Definition zerob (n : nat) := 1 Fixpoint plus (n : nat) (m : nat) =
match n with 2 match n with
| 0 => true 3 | 0 =>m
| S _ => false 4 | Sn’> =>8 (plus n’ m)
end. 5 end.



Theorem n_plus_0 : forall n : nat, plus n 0 = n.
induction n.
reflexivity. (* plus 0 0 = 0 %s trivial *)
simpl. (* simplify (plus (S n) 0 =S n) to (S (plus n 0) =S n) *)
rewrite IHn. (* use the induction hypothesis IHn : plus n 0 = n *)
reflexivity. (* Sn =S n *)

Qed.

We can also define polymorphic types. Here we use Section to avoid repeating arguments
— the following two snippets are equivalent.

1 Section list.
2 Variable A : Type.

Inductive list (A : Type) : Type := 3
| nil : list A 4 Inductive list : Type :=
| cons : A -> list A -> list A. 5 | nil : list
6 | cons : A -> list -> list.
7 End list.

Note how we quantify over Type! This way 1ist works on both Prop and Set, since Type
is a supertype of both.

Functions over list are similar to their Haskell equivalents (the following examples are
inside Section list):

Fixpoint length (xs : list) := 1 Fixpoint concat (xs : list) (ys : list) :=
match xs with 2 match xs with
| nil => 0O 3 | nil => ys
| cons _ xs => S (length xs) 4 | cons x xs => cons x (concat xs ys)
end. 5 end.

Coq automatically verified that length and concat are terminating. Now we can prove
properties over lists such as associativity of concat:

Theorem concat_assoc : forall xs ys zs,
concat (concat xs ys) zs = concat xs (concat ys zs).
induction xs.
intros. simpl. reflexivity.
intros. simpl. rewrite IHxs. reflexivity.
Qed.

There is some duplication here. The only difference between the cases is the rewrite IHxs
step where the induction hypothesis is applied. We can automate this a little with the
; operator, which applies the given tactic to all generated subgoals. Using that, we can
write the proof as

Theorem concat_assoc : forall xs ys zs,
concat (concat xs ys) zs = concat xs (concat ys zs).
induction xs; intros; simpl.
reflexivity.
rewrite IHxs. reflexivity.
Qed.
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Certified Programming with Dependent Types (CPDT) [6] features the custom tactic
crush, which tries a variety of tactics to solve the goal. Using it, the proof is as simple
as induction xs; crush. However, there is not enough space to explain its internals
properly. Thus we will avoid using it, despite much shorter resulting proofs.

2.3 Predicates

Just like types, predicates are defined via Inductive. Informally, inductive predicates are
used whenever we want x to have property P if and exactly if a condition from a set of
conditions is fulfilled. Each condition is a constructor and it’s fulfilled exactly when all
arguments can be supplied. For instance, evenness of natural numbers can be encoded by

Inductive isEven : nat -> Prop :=
| Even_0 : isEven O
| Even_SS : forall n, isEven n -> isEven (S (S n)).

and of course we can prove properties of even numbers, such as invariance under addition.

Theorem even_plus : forall n m,
isEven n -> isEven m -> isEven (n + m).
intros n m nEven mEven.
induction nEven. simpl. apply mEven.
simpl. apply Even_SS. apply IHnEven.
Qed.

First we introduce the hypothesesn m : nat, nEven : isEven nandmEven : isEven m.
Then we do induction on nEven, generating two subgoals. The first, isEven (0 + m), is
solved by simplifying to isEven m and then applying the hypothesis mEven.

In the second goal, isEven (S (S n) + m), we additionally have the induction hypotheses
IHnEven : isEven (n + m). Again we simplify the goal to isEven (S (S (n + m)))
This allows us to apply Even_SS as the goal matches the right side of that constructor.
This leaves us with isEven (n + m), which is proven by apply IHnEven.

2.3.1 Connectives

Connectives from propositional logic are also types — not is a simple type definition with-
out any induction principles, thus Definition is sufficient. Everything else is inductive,
as we need to be able to pattern match or do induction on those.

Definition not P := P -> False.

Inductive and (A : Prop) (B : Prop) : Prop :=
| conj : A -> B -> and A B.

Inductive or (A : Prop) (B : Prop) : Prop :=
| or_introl : A -> or A B
| or_intror : B -> or A B.

Inductive ex {A : Type} (P : A -> Prop) : Prop :=
| ex_intro : forall x, P x -> ex P.

not P can be written as "P and and A B has the associated operator A /\ B. Similarly,
or A B and ex P have the notations A \/ B and exists x, P x.
Some more theorems to demonstrate various tactics:
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discriminiate proves any goal when a hy-
pothesis (in this case we use the first argu-
ment of not, indicated by the 1) is built by

Theorem doublethink : “(2 + 2 = 5).
discriminate 1.

Qed. different constructors.
split is generally used with and and ap-
Theorem and_comm : forall P Q, plies the first constructor to the goal. Since
P/\NQ ->Q /\P. conj : A -> B -> and A Bthis generates a
induction 1. goal A and a goal B. assumption looks for a
split; assumption. previously introduced hypothesis whose type
Qed. is equal to the goal and applies it if found,

solving the goal.

2.4 Dependent types

We'’ve already seen usage of dependent types in the definition of isEven — we take a nat
as a type argument, leading to Even_0 : isEven 0. Of course, we can also use dependent
types outside of predicates. The standard example is the length-indexed list, also called a
vector.

Section ilist.
Variable A : Type.
Inductive ilist : nat -> Type :=
| inil : ilist O
| icons : forall {n}, A -> ilist n -> ilist (S n).

Fixpoint concat {n} {m} (xs : ilist n) (ys : ilist m) : ilist (n + m) :=
match xs with
| inil => ys
| icons x xs => icons x (concat xs ys)
end.

Of course we can convert a regular 1ist to an indexed ilist.

Fixpoint inject (xs : list A) : ilist (length xs) :=
match xs with
| nil => inil
| cons x xs => icons x (inject xs)
end.

The benefit is obvious — we can have a safe head function without Maybe:

Definition hd {n} (xs : ilist (S mn)) : A :=
match xs with
(¥ Coq knows that intl is impossible *)
| icons x _ => x
end.
End ilist.

A possible use case for length-indexed lists exists in vector math. For example, the
addition of two elements of a Cartesian vector space is only possible when the dimen-
sions match. A Coq function would enforce this by having a type signature similar



toadd : forall n, ilist n real -> ilist n real -> ilist n real. In other lan-
guages, this would often require one to either create a hard-coded set of types like V2, V3,

. —this approach is used in the Haskell package linear— or rely on run-time errors
when dimensions mismatch.

While these examples are rather straightforward, working with dependent types can
often stress the limits of Coq’s type inference heuristics, and sometimes encoding proper-
ties directly into a data structure can require intermediary types to temporarily suspend
invariants, such as in dependently typed red-black trees (Section 8.4 in [6]).

3 SAT/SMT Integration

There are currently two approaches to SAT/SMT integration into formal proofs: the
autarkic and sceptical approach [3].

In the skeptical approach we require the external solver to generate a trace, i.e. the
steps required to reconstruct a result. This can be used to reconstruct the proof object
inside the theorem prover (thus making sure our proofs stay constructive; classical logic is
incompatible with some axioms as mentioned in and [0]) and to a-posteriori verify the
SAT/SMT solver. This approach combines the speed of external solvers while reducing
the impact of possible bugs.

Finally the autarkic approach embeds a solver inside the theorem prover, verifies its
correctness and then uses it for computations. This approach ensures that the solver is
total since it’s written in a total language and requires least amount of glue code, but
doesn’t necessarily have performance comparable to well-optimized solvers like ZChaff or
VeriT.

3.1 The skeptical approach

The skeptical approach works by using an (external) oracle oracle : input -> certificate
and then verifying the certificate using a Coq function checker : input -> certificate
—> output.

For example, a SAT solver integration would have input be a CNF formula, certificate
be a resolution chain or variable assignment and output be a boolean that’s true when the
certificate is valid (e.g. & A -z is UNSAT, so calling the checker with a resolution chain
{z}.{—2} = O returns true and calling it with an assignment = = 1 returns false).

Here, correctness is simply verifying that for all formulae and certificates, if the checker
returns true then the formula has a solution. Unfortunately, bugs in the solver can cause
not all formulae to be solved. Furthermore, the solver doesn’t necessarily have to termi-
nate.

Given that we delegate the certificate generation to an external solver, this procedure
is suitable to problems where certificate generation is hard, but verification is easy; a
classic example are NP-complete problems. Difficulties here arise from finding a common
format between Coq and the external solver — proof complexity is extremely dependent
on having an appropriate representation and Coq’s preference of constructive logic also
might require an unusual representation (such as when on pen-and-paper, theorems are
often proven by contradiction; in constructive logic this only proves ——P).

This approach is used for a SMT-Coq integration in [I, [2]. Use cases include verifying
SAT/SMT solver results and using external solvers in Coq tactics. By including a certifi-
cate checking step in automated tools (possibly behind a configuration option for speed
purposes), reliability of the results of these tools can be improved.



One of the more challenging aspects of that integration was constructing the trans-
formation from Coq to SAT/SMT solver inputs and from resulting solver proof traces
to Coq proof objects in an efficient way. The computational power available in Coq is
rather limited, and needing too much time to solve a theorem can have negative impacts
on usability. However, as you can see in the benchmarks below, SMTCoq is rather fast
compared to other solutions.

That integration can also be used for mathematical proofs, as seen in [I1], a proof of
the odd-order theorem. A subproblem in that proof was solved by encoding it as a SMT
formula. The automated proof is ‘shorter than our initial version, compiles twice as fast,
and is intellectually more satisfying, as it eliminates unnecessary steps from the original
proof’. More examples can be seen by following the citation graph for [2].

3.2 The autarkic approach

In the autarkic approach the solver itself is implemented in the formal system. For Coq
that means you have a function decision_procedure : input -> output, skipping the
certificate part. Then the decision procedure itself is proven terminating and correct.

Obviously the guarantees given by doing that are significantly stronger. A program
invoking an uncertified solver is necessarily partial. The external solver might fail to
terminate or return an incorrect result (which is going to be caught by the checker, but
still causes a runtime error). On the other hand, termination proofs can be anywhere from
tedious to practically unfeasible or theoretically impossible and proving full correctness
of a solver requires that every efficiency-improving ”trick” has to be proven correct. For
example in [5], a 9 line paper proof required an over 700 line formal proof using Isabelle.
Part of the reason is that in a paper proof, many details are often omitted or glossed over
— inductive reasoning is hidden behind ellipses like in (K7, ..., K, ..., K,,), existence proofs
are missing, and so on. For a high-level human-readable proof, that is often fine and even
appreciated. Unfortunately, it doesn’t provide the strong guarantees a formal proof does.
While a human reader can fill in all these details, computer-based automation techniques
currently do not have the capability to handle induction well.

Reflexive SAT integrations such as [I4] usually restrict themselves to simple DPLL
procedures and the existing SMT solvers such as omega for quantifier-free Presburger
arithmetic are rather slow.

In the SMT solver Alt-Ergo, the core of the solver was proven correct [I3] using Coq.
It is then integrated into Coq using the Ergo module. This combines the performance
benefits of the skeptical approach with the totality and correctness guarantees of the
autarkic approach. Unfortunately, there are still orders of magnitude in performance
differences between the skeptical approach used in [2] and the Ergo-Coq approach. The
following table from [2] compares the Ergo tactics dplln for SAT and cc for Equalities +
Uninterpreted Functions (EUF) with the SMTCoq [1] tactics zchaff for SAT via ZChaff
and verit for EUF via VeriT:

Table 1 Comparison between Ergo-Coq and SMTCoq

SAT | dplln | zchaff || EUF | cc | verit
debroo | 111.5 0.8 Ds 2.3 0.3
debgoo 147.9 1.0 Dg 24.9 1.1
debgoo 201.6 1.2 D10 118.7 2.2
d6b1000 260.4 1.5 D15 - 45.7

All times are in seconds. The formulae used for testing are



e for SAT, the de Brujin formulae deb,, = Vo, ..., xo, : (22, <> :L'o)\/\/lzﬁal(xi > Tit1)
e for EUF, the formulae D, = Vf : (/\?;Ol(xi =y ANy = f(Tit1)) V(2 = 2 ANz =
f(@it1))) = zo = f(zn)

4 Conclusion

We provided an introductory tutorial to Coq, giving an overview of the underlying type
theory, usage of inductive and dependent types, and encoding logical predicates. Finally
we presented both skeptical and autarkic approaches to SAT/SMT integration, including
benchmarks between SMTCoq and Ergo-Coq. So far, skeptical solvers appear to be orders
of magnitude faster, and the effort required to interface Coq to them is rather manage-
able. Furthermore, most recent developments in Coq abandoned the idea of fully autarkic
solvers, opting for either a proven core (Ergo-Coq) or a-posteriori verification (SMTCoq).
A major difficulty in proof automation is the rather unsatisfactory support for induction.
Improving this would be a big step towards improving the transition from paper proofs to
formal proofs.

Related works

To learn more about Coq, check the Coq manual [7], CPDT [6] or Coq’Art [4]. A more
interactive course is Benjamin C. Pierce’s Software Foundations, available at [16] For
Coq usage in mathematics, see the Homotopy Type Theory book [I7] and Univalent
Mathematics [18].
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